
Clean Code:
A Reader-Centered Approach

@matthewrenze

#sddconf













About Me

Independent consultant 

Education

B.S. in Computer Science (ISU)

B.A. in Philosophy (ISU)

Community

Public Speaker

Pluralsight Author

Microsoft MVP

ASPInsider

Open-Source Software



Overview

Clean Code

Names

Functions

Classes

Comments

Process



Source: http://www.bernie-eng.com/blog/wp-content/uploads/2011/03/code.jpg



What is Bad Code?

Difficult to read

Difficult to understand

Difficult to maintain

Contains bugs

Contains surprises



The Total Cost of Owning a Mess

Source: Clean Code



Source: http://talkingincode.com/wp-content/uploads/2014/12/crapcode.png





The way we avoid a mess is by 
keeping our code clean.



What is Clean Code?



What is Clean Code?

Simple and direct

Reads like well-written prose

Never obscures the designer’s intent
Full of crisp abstractions

Contains straight-forward lines of control
Grady Booch

Co-inventor of UML



What is Clean Code?

Runs all the tests

Expresses all the design ideas in the system

Minimizes the number of entities

Minimizes duplication

Expresses ideas clearly
Ron Jeffries

Co-inventor of XP



What is Clean Code?

Readable by others

Has unit tests

Has meaningful names

Has minimal dependencies

Do one thing
Dave Thomas

Co-Author of 
The Pragmatic Programmer



What is Clean Code?

“You know you are working on 
clean code when each routine you 
read turns out to be pretty much 
what you expected.”

Ward Cunningham

Inventor of the Wiki 
Co-inventor of XP



What is Clean Code?

Simple

Readable

Understandable

Maintainable

Testable Matthew Renze

Not really famous for 
anything… yet : )



What is Clean Code?

Code that is written for the reader of the 
code… not for the author… or the machine



Why Should We Invest in Clean Code?

Sources: 

• Barry Boehm - Software Engineering Economics, Prentice Hall 

• Schach, R., Software Engineering, Fourth Edition, McGraw-Hill

• Glass, Robert, Frequently Forgotten Fundamental Facts about Software Engineering



Why Should We Invest in Clean Code?

Source: Clean Code



Clean Code is an Investment

Clean code makes it easier to:

Write new code

Maintain old code

Invest in code readability



How Do You Write Clean Code?

Write code for the reader

Not for the author

Not for a machine



How Do You Write Clean Code?

“Always code as if the person who 
ends up maintaining your code is a 

violent psychopath who knows 

where you live!”
- Author Unknown



Names



Choose Names Thoughtfully

Inigo Montoya



Use Intention-Revealing Names

// Bad - Terse variable name
int d;  // days in queue

// Good
int daysInQueue;



Use Intention-Revealing Names

// Bad – Unclear method name
private int Process();

// Good
private int ParseCustomerIdFromFile();



Use Names from Problem Domain

// Problem domain
public class Customer {}

public void AddAccount();



Use Names from Solution Domain

// Solution domain
public class Factory {}

public void AddToJobQueue();



Use Names from Both Domains

// Both domains
public class CustomerFactory {}

public void AddAccountToJobQueue();



Avoid Disinformation

// Bad - misleading
ISet<Customer> customerList;



Use Pronounceable Names

// Bad – Not pronounceable names
public class DtaRcrd102
{

private DateTime genymdhms;

private DateTime modymdhms;

private string pszqint = "102";
}



Use Pronounceable Names

// Bad – Not pronounceable names
public class DtaRcrd102
{

private DateTime genymdhms;

private DateTime modymdhms;

private string pszqint = "102";
}

// Good – Pronounceable names
public class Customer
{

private DateTime generationTimestamp;

private DateTime modificationTimestamp;

private string recordId = "102";
}



Avoid Encodings

// Bad – Hungarian Notation
private int intSomeValue = 123;



Avoid Encodings

// Bad - Module prefixes
private int m_SomeField = 0;



Avoid Encodings

// OK... Maybe?
private int _someField = 0;



Class Names

// Good - Noun or noun phrase
public class Customer

public class AddressParser

public class AddAccountCommand



Class Names

// Bad - Fuzzy names
public class ObjectManager

public class EntityProcessor

public class Stuff

// Good - Noun or noun phrase
public class Customer

public class AddressParser

public class AddAccountCommand



Method Names

// Good - Verb or verb phrase
public void AddCustomer()

public void DeleteAccount()

public string ParseAddress()



Method Names

// Bad - Fuzzy names
public string Process()

public void DoWork()

// Good - Verb or verb phrase
public void AddCustomer()

public void DeleteAccount()

public string ParseAddress()



Method Names

// Good - Boolean predicates
public bool IsValid()

public bool HasAccount()



Length of Variable Names 
Should Increase with Scope

// Good - Very short range variable names
for (int i = 0; i < 10; i++) {}

list.Sum(p => p.GetAmount());



Length of Variable Names 
Should Increase with Scope

// Good - Very short range variable names
for (int i = 0; i < 10; i++) {}

list.Sum(p => p.GetAmount());

// Good - Short method variable names
var balance = GetAccountBalance();



Length of Variable Names 
Should Increase with Scope

// Good - Very short range variable names
for (int i = 0; i < 10; i++) {}

list.Sum(p => p.GetAmount());

// Good - Short method variable names
var balance = GetAccountBalance();

// Good - Longer field variable names
private int totalAccountBalance = 0;



Length of Variable Names 
Should Increase with Scope

// Good - Very short range variable names
for (int i = 0; i < 10; i++) {}

list.Sum(p => p.GetAmount());

// Good - Short method variable names
var balance = GetAccountBalance();

// Good - Longer field variable names
private int totalAccountBalance = 0;

// Good - Even longer global variable names
global int totalBalanceInAllBankAccounts;



Length of Method Names 
Should Decrease with Scope

// Good - Short public method names
public void GetCustomers();

public void Save();



Length of Method Names 
Should Decrease with Scope

// Good - Short public method names
public void GetCustomers();

public void Save();

// Good - Longer private method names
private string ParseHtmlFromFile()

private int GetIdFromAccountHolder()



Length of Class Names 
Should Decrease with Scope

// Good - Short public class name
public class Account



Length of Class Names 
Should Decrease with Scope

// Good - Short public class name
public class Account

// Good - Longer private class name
private class AccountNumberGenerator



Length of Class Names 
Should Decrease with Scope

// Good - Short public class name
public class Account

// Good - Longer private class name
private class AccountNumberGenerator

// Good - Longer derived class name
public abstract class Account

public class SavingsAccount : Account



Functions



Functions Should Be Small

Simpler

Easier to read

Easier to understand

Easier to test

Contain less bugs



How Small?

Most evidence says:

Less than 20 lines

Uncle Bob says:

Less than 10 lines

Average 3 to 6 lines 



Large Functions are Where 
Classes Go to Hide



Functions Should Do One Thing

Source: http://www.wengerna.com/giant-knife-16999



One Level of Abstraction per Function

// Good - Separate levels of abstraction
public File CreateFile()

public Html RenderHtml()

private string RenderHtmlBody()

private string RenderHtmlElement()

private char RenderHtmlElementClosingTag()



Minimize the Number of Parameters

// Try to minimize the # of arguments
public void SetNone() {}

public void SetOne(int arg1)

public void SetTwo(int arg1, int arg2)

public void SetThree(int arg1, int arg2, int arg3)

public void SetMany(Args args)



Avoid Flag Arguments

// Bad – Flag arguments
public void Render(bool useColor)



Avoid Flag Arguments

// Bad – Flag arguments
public void Render(bool useColor)

// Good – No flag arguments
public void RenderInColor()

public void RenderInGrayScale()



Avoid Output Arguments

// Bad - Uses ‘out’ argument
public void AppendFooter(out Report report) 
{
…

}

AppendFooter(out report);



Avoid Output Arguments

// Bad - Uses ‘out’ argument
public void AppendFooter(out Report report) 
{
…

}

AppendFooter(out report);

// Good - No ‘out’ argument
public ReportBuilder AppendFooter()
{
…

}

reportBuilder.AppendFooter();



Command-Query Separation

Command

Does something

Should modify state

Should not return a value



Command-Query Separation

Command

Does something

Should modify state

Should not return a value

Query

Answers a question

Should not modify state

Always returns a value



Command-Query Separation

Command

Does something

Should modify state

Should not return a value

Query

Answers a question

Should not modify state

Always returns a value

Avoid mixing the two!



Avoid Side Effects



Avoid Duplication

Source: Sony Pictures Home Entertainment 



Use Functions to Enhance Readability

// Bad – One giant chunk of code
public void CreateReport()
{
... Giant block of code ...

}



Use Functions to Enhance Readability

// Bad – One giant chunk of code
public void CreateReport()
{
... Giant block of code ...

}

// Good – Uses small named functions
public void CreateReport()
{

CreateHeader();

CreateBody();

CreateFooter();
}



Classes



Classes Should Be Small

Similar benefits as small functions

Single-Responsibility Principle



How Small? 

Source: Clean Code



Classes Should Be Narrow

Source: Clean Code



Follow the Law of Demeter

// Bad - Law of Demeter violation
var rent = customer.Pocket.Wallet

.Money.GetRentMoney();



Follow the Law of Demeter

// Bad - Law of Demeter violation
var rent = customer.Pocket.Wallet

.Money.GetRentMoney();

// Good - No violation
var rent = customer.GetRentMoney();



Follow the Law of Demeter

// Bad - Law of Demeter violation
var rent = customer

.Pocket.Wallet

.Money.GetRentMoney();

// Good - No violation
var rent = customer.GetRentMoney();

Source: Athens Banner-Herald



Object vs. Data Structure

public class Rectangle
{

private double x;
...
public double GetX()
{

return x;
}
...
public double GetArea()
{

return width * height;
}

}



Object vs. Data Structure

public class Rectangle
{

private double x;
...
public double GetX()
{

return x;
}
...
public double GetArea()
{

return width * height;
}

}

public struct Rectangle
{

public double X;

public double Y;

public double Width;

public double Height;
}



Avoid Hybrid Object/Structures

Source: http://www.layoutsparks.com/1/147428

/alien-resurrection-scary-dreadful-31000.html



Have a Consistent Order

public class SomeClass
{

private const int SomeConst = 123;

private int _someField;

private int SomeProperty {...}

public SomeClass() {...}

public void DoSomethingPublic() {...}

private void DoSomethingPrivate() {...}
}



Choose the Right Abstractions

Model

View

Controller

Repository

Factory

Builder

Adapter



Other Practices for Classes

DRY Principle

High Cohesion 

Low Coupling

Dependency Injection

Testability



Comments



Comments Represent a Failure

Source: http://a.tgcdn.net/images/products/zoom/no_comment.jpg



Obsolete Comments Lie



Explain Yourself in Code

// Bad - Code explained in comment

// Check to see if the employee is eligible for full benefits

if ((employee.FullTime || SalaryFlag)

&& (employee.Age > 65))



Explain Yourself in Code

// Bad - Code explained in comment

// Check to see if the employee is eligible for full benefits

if ((employee.FullTime || SalaryFlag)

&& (employee.Age > 65))

// Good - Code explains itself

private bool IsEligibleForFullBenefits(Employee employee)

{

return ((employee.FullTime || SalaryFlag)

&& employee.Age > 65))

}



Explain Yourself in Code

// Bad - Code explained in comment

// Check to see if the employee is eligible for full benefits

if ((employee.FullTime || SalaryFlag)

&& (employee.Age > 65))

// Good - Code explains itself

private bool IsEligibleForFullBenefits(Employee employee)

{

return ((employee.FullTime || SalaryFlag)

&& employee.Age > 65))

}

if (IsEligibleForFullBenefits(employee))



Bad Comments

// All of these comments are bad

// Opens the file
var file = File.Open();

// Returns day of month
private int GetDayOfWeek()

// 08-07-2013 – Fixed Bug (MLR)

Main()
{
…

} // end main



Zombie Code

// Zombie Code
// if (a == 1)
//     b = c + 1

Source: The Walking Dead



Zombie Code

// Zombie Code
// if (a == 1)
//     b = c + 1

Source: The Walking Dead

Kill it with fire!



Necessary Comments

// Copyright © 2017 Matthew Renze

// Trim is necessary to prevent a
// search term mismatch

// Warning: Slow running test

// TODO: Refactor to factory pattern

/// <summary>
/// Opens the file for reading
/// </summary>



The Best Comment is 
No Comment at All

(but only if our code clearly explains itself)



The Process



The Principles

Test-Driven Development (TDD)

Simplicity (KISS)

Continuous Refactoring

Red

GreenRefactor



Test-Driven Development Process

1. Create a failing unit test

2. Code the simplest thing 

3. Refactor until the code is clean

Red

GreenRefactor



Test-Driven Development

Starts with a test

Tests drive the design

Code evolves over time

Red

GreenRefactor



TDD Code is:

Testable 

Maintainable

Reliable

Self-documenting

Clean

Easy to keep clean

Red

GreenRefactor



Simplicity

Keep it Simple (KISS)

Unnecessary complexity

You Ain’t Gonna Need It (YAGNI)

Incremental algorithmics

Red

GreenRefactor



Continuous Refactoring

Working code is not the last step

Refactor until clean

Continuous process

Red

GreenRefactor



Continuous Refactoring

All creative endeavors are 
iterative processes

Red

GreenRefactor



Follow the Boy Scout Rule

“Leave the campground just a little 
bit cleaner than you found it.” 

– adapted from Robert Stephenson Smyth Baden-Powell’s farewell message to the 
scouts: “Try and leave this world a little better than you found it.” 



“Leave the campground just a little 
bit cleaner than you found it.”



Conclusion



Conclusion

Clean code is:

Simple

Readable

Understandable

Maintainable

Testable

Clean code is a philosophy of 
writing code for the reader



Conclusion

Use intention revealing names

Classes and functions should be small

Use comments to express a failure

The process is:

1. Test First (TDD)

2. Simplest solution

3. Continuously refactor



Where to Go Next



Where to Go Next



Where to Go Next

http://pluralsight.com/training/Courses/TableOfCont
ents/writing-clean-code-humans

http://pluralsight.com/training/Courses/TableOfContents/writing-clean-code-humans


Where to Go Next

Articles

Courses

Presentations

Source Code

Videos

www.matthewrenze.com



Feedback

Feedback is very important to me!

One thing you liked?

One thing I could improve?



“Programming is not about telling 
the computer what to do.

Programming is the art of telling 
another human what the 
computer should do.”

- Donald Knuth



“Any fool can write code that a 
computer can understand. 

Good programmers write code 
that humans can understand.”

- Martin Fowler



“To leave the campground just a 
little bit cleaner than you found it.” 

Uncle Bob Wants You:



Contact Info

Matthew Renze

Data Science Consultant

Renze Consulting

Twitter: @matthewrenze

Email:  info@matthewrenze.com

Website:  www.matthewrenze.com

Thank You! : )

https://twitter.com/MatthewRenze
mailto:info@matthewrenze.com
http://www.matthewrenze.com/

