
Clean Architecture
Patterns, Practices, and Principles

@MatthewRenze

#CodeMash

Overview

1. Clean Architecture

Overview

1. Clean Architecture

2. Domain-Centric Architecture

Overview

1. Clean Architecture

2. Domain-Centric Architecture

3. Application Layer

Overview

1. Clean Architecture

2. Domain-Centric Architecture

3. Application Layer

4. Commands and Queries

Overview

1. Clean Architecture

2. Domain-Centric Architecture

3. Application Layer

4. Commands and Queries

5. Functional Organization

Overview

1. Clean Architecture

2. Domain-Centric Architecture

3. Application Layer

4. Commands and Queries

5. Functional Organization

6. Microservices

Focus

Enterprise Architecture

Focus

Enterprise Architecture

Modern equivalent of 3-Layer

Focus

Enterprise Architecture

Modern equivalent of 3-Layer

Generally applicable

Focus

Enterprise Architecture

Modern equivalent of 3-Layer

Generally applicable

6 Key Points

Focus

Enterprise Architecture

Modern equivalent of 3-Layer

Generally applicable

6 Key Points

Q & A

What is Software Architecture?

Source: http://msdn.microsoft.com/
en-us/library/ff650706.aspx

What is Software Architecture?

High-level

Source: http://msdn.microsoft.com/
en-us/library/ff650706.aspx

What is Software Architecture?

High-level

Structure

Source: http://msdn.microsoft.com/
en-us/library/ff650706.aspx

What is Software Architecture?

High-level

Structure

Layers

Source: http://msdn.microsoft.com/
en-us/library/ff650706.aspx

What is Software Architecture?

High-level

Structure

Layers

Components

Source: http://msdn.microsoft.com/
en-us/library/ff650706.aspx

What is Software Architecture?

High-level

Structure

Layers

Components

Relationships

Source: http://msdn.microsoft.com/
en-us/library/ff650706.aspx

Levels of Architectural Abstraction

System

Sub-systems

Layers

Components

Classes

Data and Methods

Levels of Architectural Abstraction

System

Sub-systems

Layers

Components

Classes

Data and Methods

Messy vs Clean Architecture

Messy vs Clean Architecture

Messy vs Clean Architecture

What Is Bad Architecture?

Complex

Inconsistent

Incoherent

Rigid

Brittle

Untestable

Unmaintainable

What Is Clean Architecture?

Simple

Understandable

Flexible

Emergent

Testable

Maintainable

What Is Clean Architecture?

Architecture that is designed for the
inhabitants of the architecture…
not for the architect… or the machine

What Is Clean Architecture?

Architecture that is designed for the
inhabitants of the architecture…
not for the architect… or the machine

What Is Clean Architecture?

Architecture that is designed for the
inhabitants of the architecture…
not for the architect… or the machine

What Is Clean Architecture?

Architecture that is designed for the
inhabitants of the architecture…
not for the architect… or the machine

What Is Clean Architecture?

Architecture that is designed for the
inhabitants of the architecture…
not for the architect… or the machine

Why Is Clean Architecture Important?

Cost/benefit

Why Is Clean Architecture Important?

Cost/benefit

Minimize cost to maintain

Why Is Clean Architecture Important?

Cost/benefit

Minimize cost to maintain

Maximize business value

Why Is Clean Architecture Important?

Cost/benefit

Minimize cost to maintain

Maximize business value

Maximize total ROI

Decisions, Decisions, Decisions…

Context is king

Decisions, Decisions, Decisions…

Context is king

All decisions are a tradeoff

Decisions, Decisions, Decisions…

Context is king

All decisions are a tradeoff

Use your best judgement

Domain-Centric Architecture

Earth

Moon

Mercury

Venus

Sun
Mars

Saturn
Jupiter

Earth

Mercury

Venus Sun

Saturn
Jupiter

Mars

Geocentric Model Heliocentric Model

Earth

Moon

Mercury

Venus

Sun
Mars

Saturn
Jupiter

Earth

Mercury

Venus Sun

Saturn
Jupiter

Mars

Classic 3-layer Database-centric Architecture

Database
Database

Data Access

Business Logic

UI

Database- vs. Domain-centric Architecture

Database
Database

Data Access

Business Logic

UI

DatabaseDomain

Application

Presentation

Database

“The first concern of the architect is
to make sure that the house is

usable, it is not to ensure that the
house is made of brick.”

– Uncle Bob

Essential vs. Detail

Essential vs. Detail

Space is essential

Essential vs. Detail

Space is essential

Usability is essential

Essential vs. Detail

Building material is a detail

Essential vs. Detail

Building material is a detail

Ornamentation is a detail

Essential vs. Detail

Essential vs. Detail

Domain is essential

Essential vs. Detail

Domain is essential

Use cases are essential

Essential vs. Detail

Presentation is a detail

Essential vs. Detail

Presentation is a detail

Persistence is a detail

Database- vs. Domain-centric Architecture

Database
Database

Data Access

Business Logic

UI

DatabaseDomain

Application

Presentation

Database

Database- vs. Domain-centric Architecture

Database
Database

Data Access

Business Logic

UI

Database- vs. Domain-centric Architecture

DatabaseDomain

Application

Presentation

Database

Hexagonal Architecture

Original source: http://alistair.cockburn.us/Hexagonal+architecture

Application

http
feed

GUI

http
adapter

app-to-app
adapter

test
adapter

mock
database

database
adapter

mock
telephone

email
adapter

answering
machine
adapter

app

DB

Onion Architecture

Database

Application Services

User Interface

Domain
Model

Domain Services

Application Core

DB

web
service

file

Original source: http://jeffreypalermo.com/blog/the-onion-architecture-part-2/

Database

Controllers

Entities

Use Cases

Original source: http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html

External
Interfaces

Presenter
Use case

output port

Use case
interactor

Use case
input port

Controller

Flow
of

Control

I

I

Clean Architecture

It’s All the Same Thing

Hexagonal Onion Clean

Original Source: http://blog.ploeh.dk/2013/12/03/layers-onions-ports-adapters-its-all-the-same/

Why Use Domain-Centric Architecture?

Pros
Focus on essential

Why Use Domain-Centric Architecture?

Pros
Focus on essential

Less coupling to details

Why Use Domain-Centric Architecture?

Pros
Focus on essential

Less coupling to details

Necessary for DDD

Why Use Domain-Centric Architecture?

Pros
Focus on essential

Less coupling to details

Necessary for DDD

Cons
Change is difficult

Why Use Domain-Centric Architecture?

Pros
Focus on essential

Less coupling to details

Necessary for DDD

Cons
Change is difficult

Requires extra thought

Why Use Domain-Centric Architecture?

Pros
Focus on essential

Less coupling to details

Necessary for DDD

Cons
Change is difficult

Requires extra thought

Initial higher cost

Application Layer

What Are Layers?

Levels of abstraction

Single-Responsibility Principle

Developer roles / skills

Multiple implementations

Varying rates of change

Classic 3-Layer Architecture

UI

Business Logic

Data Access

Database

Users

Dependency

Modern 4-Layer Architecture

Presentation

Domain

Persistence

Users

Application

Infrastructure

OSDatabase

C
ro

ss-C
u
ttin

g
 C

o
n
cern

s

Dependency

Application Layer

Implements use cases Presentation

Domain

Persistence

Users

Application

Infrastructure

OSDatabase

C
ro

ss-C
u
ttin

g
 C

o
n
cern

s

Dependency

Application Layer

Implements use cases

High-level application logic

Presentation

Domain

Persistence

Users

Application

Infrastructure

OSDatabase

C
ro

ss-C
u
ttin

g
 C

o
n
cern

s

Dependency

Application Layer

Implements use cases

High-level application logic

Knows about domain

Presentation

Domain

Persistence

Users

Application

Infrastructure

OSDatabase

C
ro

ss-C
u
ttin

g
 C

o
n
cern

s

Dependency

Application Layer

Implements use cases

High-level application logic

Knows about domain

No knowledge of other layers

Presentation

Domain

Persistence

Users

Application

Infrastructure

OSDatabase

C
ro

ss-C
u
ttin

g
 C

o
n
cern

s

Dependency

Application Layer

Implements use cases

High-level application logic

Knows about domain

No knowledge of other layers

Contains interfaces for details

Presentation

Domain

Persistence

Users

Application

Infrastructure

OSDatabase

C
ro

ss-C
u
ttin

g
 C

o
n
cern

s

Dependency

Layer Dependencies

Presentation

Domain

Persistence

Users

Application

Infrastructure

OSDatabase

C
ro

ss-C
u
ttin

g
 C

o
n
cern

s

Flow of Control Dependency

Layer Dependencies

Dependency inversion
Presentation

Domain

Persistence

Users

Application

Infrastructure

OSDatabase

C
ro

ss-C
u
ttin

g
 C

o
n
cern

s

Flow of Control Dependency

Layer Dependencies

Dependency inversion

Inversion of control

Presentation

Domain

Persistence

Users

Application

Infrastructure

OSDatabase

C
ro

ss-C
u
ttin

g
 C

o
n
cern

s

Flow of Control Dependency

Layer Dependencies

Dependency inversion

Inversion of control

Independent deployability

Presentation

Domain

Persistence

Users

Application

Infrastructure

OSDatabase

C
ro

ss-C
u
ttin

g
 C

o
n
cern

s

Flow of Control Dependency

Layer Dependencies

Dependency inversion

Inversion of control

Independent deployability

Flexibility and maintainability

Presentation

Domain

Persistence

Users

Application

Infrastructure

OSDatabase

C
ro

ss-C
u
ttin

g
 C

o
n
cern

s

Flow of Control Dependency

Users

OSDatabase

Composition

Implements
DatabaseContext

IDatabaseContext

Sale

ICreateSaleCommand

CreateSaleCommand

SalesController

IInventoryClient

InventoryClient

C
ro

ss-C
u
ttin

g
C

o
n
cern

s

ID
ateService

D
ateService

Presentation

Application

Persistence

Domain

Infrastructure

Why Use an Application Layer?

Pros
Focus is on use cases

Why Use an Application Layer?

Pros
Focus is on use cases

Easy to understand

Why Use an Application Layer?

Pros
Focus is on use cases

Easy to understand

Follows DIP

Why Use an Application Layer?

Pros
Focus is on use cases

Easy to understand

Follows DIP

Cons
Additional cost

Why Use an Application Layer?

Pros
Focus is on use cases

Easy to understand

Follows DIP

Cons
Additional cost

Requires extra thought

Why Use an Application Layer?

Pros
Focus is on use cases

Easy to understand

Follows DIP

Cons
Additional cost

Requires extra thought

IoC is counter-intuitive

Commands and Queries

Command-Query Separation

Command
Does something

Should modify state

Should not return a value

Command-Query Separation

Command
Does something

Should modify state

Should not return a value

Query
Answers a question

Should not modify state

Always returns a value

Command-Query Separation

Command
Does something

Should modify state

Should not return a value
(ideally)

Query
Answers a question

Should not modify state

Always returns a value

Avoid mixing the two!

CQRS Architectures

Presentation

Domain

Persistence

Users

Queries

Database

Commands

Data Access

Data Flow

CQRS Architectures

Presentation

Domain

Persistence

Users

Queries

Database

Commands

Data Access

Data Flow

CQRS Architectures

Presentation

Domain

Persistence

Users

Queries

Database

Commands

Data Access

Data Flow

CQRS Architectures

Presentation

Domain

Persistence

Users

Queries

Database

Commands

Data Access

Data Flow

CQRS Type 1 – Single Database

Presentation

Domain

Persistence

Users

Queries

Database

Commands

Data Access

Data Flow

CQRS Type 1 – Single Database

Presentation

Domain

Persistence

Users

Queries

Database

Commands

Data Access

Data Flow

CQRS Type 1 – Single Database

Presentation

Domain

Persistence

Users

Queries

Database

Commands

Data Access

Data Flow

CQRS Type 2 – Read/Write Databases

Presentation

Domain

Persistence

Users

Queries

Write
Database

Commands

Data Access

Read
Database

Data Flow

CQRS Type 2 – Read/Write Databases

Presentation

Domain

Persistence

Users

Queries

Write
Database

Commands

Data Access

Read
Database

Data Flow

CQRS Type 2 – Read/Write Databases

Presentation

Domain

Persistence

Users

Queries

Write
Database

Commands

Data Access

Read
Database

Data Flow

CQRS Type 2 – Read/Write Databases

Presentation

Domain

Persistence

Users

Queries

Write
Database

Commands

Data Access

Read
Database

Data Flow

CQRS Type 2 – Read/Write Databases

Presentation

Domain

Persistence

Users

Queries

Write
Database

Commands

Data Access

Read
Database

Data Flow

CQRS Type 3 – Event Sourcing

Presentation

Domain

Persistence

Users

Queries

Event
Store

Commands

Data Access

Read
Database

Data Flow

CQRS Type 3 – Event Sourcing

Presentation

Domain

Persistence

Users

Queries

Event
Store

Commands

Data Access

Read
Database

Data Flow

Sale Created

Item 1 Added

Item 2 Added

Payment Made

Sale Completed

Events

CQRS Type 3 – Event Sourcing

Presentation

Domain

Persistence

Users

Queries

Event
Store

Commands

Data Access

Read
Database

Data Flow

Sale Created

Item 1 Added

Item 2 Added

Payment Made

Sale Completed

Events

CQRS Type 3 – Event Sourcing

Presentation

Domain

Persistence

Users

Queries

Event
Store

Commands

Data Access

Read
Database

Data Flow

CQRS Type 3 – Event Sourcing

Presentation

Domain

Persistence

Users

Queries

Event
Store

Commands

Data Access

Read
Database

CQRS Type 3 – Event Sourcing

Complete audit trail

Presentation

Domain

Persistence

Users

Queries

Event
Store

Commands

Data Access

Read
Database

CQRS Type 3 – Event Sourcing

Complete audit trail

Point-in-time reconstruction

Presentation

Domain

Persistence

Users

Queries

Event
Store

Commands

Data Access

Read
Database

CQRS Type 3 – Event Sourcing

Complete audit trail

Point-in-time reconstruction

Replay events

Presentation

Domain

Persistence

Users

Queries

Event
Store

Commands

Data Access

Read
Database

CQRS Type 3 – Event Sourcing

Complete audit trail

Point-in-time reconstruction

Replay events

Rebuild production database

Presentation

Domain

Persistence

Users

Queries

Event
Store

Commands

Data Access

Read
Database

Why Use CQRS?

Pros
More efficient design

Why Use CQRS?

Pros
More efficient design

Simpler within each stack

Why Use CQRS?

Pros
More efficient design

Simpler within each stack

Optimized performance

Why Use CQRS?

Pros
More efficient design

Simpler within each stack

Optimized performance

Cons
Inconsistent across stacks

Why Use CQRS?

Pros
More efficient design

Simpler within each stack

Optimized performance

Cons
Inconsistent across stacks

Type 2 is more complex

Why Use CQRS?

Pros
More efficient design

Simpler within each stack

Optimized performance

Cons
Inconsistent across stacks

Type 2 is more complex

Type 3 might be overkill

Functional Organization

“The architecture should scream
the intent of the system!”

– Uncle Bob

B
ed

ro
o

m
B
ed

ro
o

m

D
in

in
g

 R
o

o
m

Li
vi

n
g

 R
o

o
m

K
itc

h
en

En
tr

y

U
til

ity
B
at

h

B
ed

ro
o

m
B
ed

ro
o

m

D
in

in
g

 R
o

o
m

Li
vi

n
g

 R
o

o
m

K
itc

h
en

En
tr

y

U
til

ity
B
at

h

Material Quantity Cost

Appliances 5 $5,000

Cabinets 10 $2,500

Doors 15 $750

Fixtures 12 $2,400

Floors 9 $4,000

Walls 20 $10,000

Windows 8 $2,500

ControllersViews

Models

ControllersViews

Models

vs

VendorsProducts

Customers

Content

Controllers

Models

Scripts

Views

vs

Content

Controllers

Models

Scripts

Views

Customers

Employees

Products

Sales

Vendors

So what?

vs

Why Use Functional Organization

Pros
Spatial locality

Why Use Functional Organization

Pros
Spatial locality

Easy to navigate

Why Use Functional Organization

Pros
Spatial locality

Easy to navigate

Avoid vendor lock-in

Why Use Functional Organization

Pros
Spatial locality

Easy to navigate

Avoid vendor lock-in

Cons
Lose framework conventions

Why Use Functional Organization

Pros
Spatial locality

Easy to navigate

Avoid vendor lock-in

Cons
Lose framework conventions

Lose automatic scaffolding

Why Use Functional Organization

Pros
Spatial locality

Easy to navigate

Avoid vendor lock-in

Cons
Lose framework conventions

Lose automatic scaffolding

Categorical is easier at first

Microservices

Components

UI

Business

Data Access

Database

Users

Sales Support Inventory

Sales Support Inventory

Sales Support Inventory

Components

UI

Business

Data Access

Database

Users

Sales Support Inventory

Sales Support Inventory

Sales Support Inventory

Problem Domain

Sales
Sales Opportunity

Contact

Sales Person

Product

Sales Territory

Support
Support Ticket

Customer

Support Person

Product

Resolution

Single Domain Model

Sales
Opportunity

Support
Ticket

Product

Employee

Customer

Sales
Territory

Resolution

Single Domain Model

Sales
Opportunity

Support
Ticket

Product

Employee

Customer

Sales
Territory

Resolution

Single Domain Model

Sales
Opportunity

Support
Ticket

Product

Employee

Customer

Sales
Territory

Resolution

Single Domain Model

Sales
Opportunity

Support
Ticket

Product

Employee

Customer

Sales
Territory

Resolution

Support
Sales

Overlapping Contexts

Sales
Opportunity

Support
Ticket

Product

Employee

Customer

Sales
Territory

Resolution

SupportSales

Bounded Contexts

Sales
Opportunity

Support
Ticket

Product

Contact

Sales
Territory

Resolution

Customer

Product

Support
Person

Sales Person

Microservice Architectures

Sales

Support

Inventory

Marketing HR

Microservice Architectures

Subdivide system Sales

Support

Inventory

Marketing HR

Microservice Architectures

Subdivide system

Light-weight APIs
Sales

Support

Inventory

Marketing HR

Microservice Architectures

Subdivide system

Light-weight APIs

Small teams

Sales

Support

Inventory

Marketing HR

Microservice Architectures

Independent Sales

Support

Inventory

Marketing HR

Microservice Architectures

Independent

Similar to SOA
Sales

Support

Inventory

Marketing HR

Microservice Architectures

Independent

Similar to SOA

Size matters

Sales

Support

Inventory

Marketing HR

Why Use Microservices?

Pros
Less cost for large domains

Why Use Microservices?

Pros
Less cost for large domains

Smaller teams

Why Use Microservices?

Pros
Less cost for large domains

Smaller teams

Independence

Why Use Microservices?

Pros
Less cost for large domains

Smaller teams

Independence

Cons
Only for large domains

Why Use Microservices?

Pros
Less cost for large domains

Smaller teams

Independence

Cons
Only for large domains

Higher up-front cost

Why Use Microservices?

Pros
Less cost for large domains

Smaller teams

Independence

Cons
Only for large domains

Higher up-front cost

Distributed system costs

Code Demo

Where to Go Next?

Where to Go Next?

Martin Fowler

Where to Go Next?

http://cleancoders.com/ Robert C. Martin

http://cleancoders.com/

Where to Go Next?

Eric Evans

Where to Go Next?

Greg Young Udi Dahan

Where to Go Next?

Articles

Courses

Presentations

Source Code

Videos

www.matthewrenze.com

www.pluralsight.com/authors/matthew-renze

Conclusion

Summary

Focus on the inhabitants

Summary

Focus on the inhabitants

Domain-centric Architecture

DatabaseDomain

Application

Presentation

Summary

Focus on the inhabitants

Domain-centric Architecture

Application Layer

Presentation

Domain

Persistence

Users

Application

Infrastructure

OSDatabase

C
ro

ss-C
u
ttin

g
 C

o
n
cern

s

Summary

Focus on the inhabitants

Domain-centric Architecture

Application Layer

Commands and Queries

Presentation

Domain

Persistence

Users

Queries

Database

Commands

Data Access

Summary

Focus on the inhabitants

Domain-centric Architecture

Application Layer

Commands and Queries

Functional Cohesion
VendorsProducts

Customers

Summary

Focus on the inhabitants

Domain-centric Architecture

Application Layer

Commands and Queries

Functional Cohesion

Bounded Contexts

Sales

Support

Inventory

Marketing HR

Feedback

Very important to me!

One thing you liked?

One thing I could improve?

Contact Info

Matthew Renze

Data Science Consultant

Renze Consulting

Twitter: @matthewrenze

Email: info@matthewrenze.com

Website: www.matthewrenze.com

Thank You! :)

https://twitter.com/MatthewRenze
mailto:info@matthewrenze.com
http://www.matthewrenze.com/

