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Why Is Clean Architecture Important?

Cost/benefit

Minimize cost to maintain

Maximize business value

Maximize total ROI 
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Decisions, Decisions, Decisions…

Context is king

All decisions are a tradeoff

Use your best judgement
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“The first concern of the architect is 
to make sure that the house is 

usable, it is not to ensure that the 
house is made of brick.” 

– Uncle Bob
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Persistence is a detail
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Hexagonal Architecture

Original source:  http://alistair.cockburn.us/Hexagonal+architecture
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Onion Architecture
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It’s All the Same Thing

Hexagonal Onion Clean

Original Source: http://blog.ploeh.dk/2013/12/03/layers-onions-ports-adapters-its-all-the-same/
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Why Use Domain-Centric Architecture?

Pros
Focus on essential

Less coupling to details

Necessary for DDD

Cons
Change is difficult

Requires extra thought

Initial higher cost
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What Are Layers?

Levels of abstraction

Single-Responsibility Principle

Developer roles / skills

Multiple implementations

Varying rates of change
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Layer Dependencies
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Why Use an Application Layer?

Pros
Focus is on use cases

Easy to understand

Follows DIP

Cons
Additional cost

Requires extra thought

IoC is counter-intuitive
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Command-Query Separation

Command
Does something

Should modify state

Should not return a value 
(ideally)

Query
Answers a question

Should not modify state

Always returns a value

Avoid mixing the two!
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Why Use CQRS?

Pros
More efficient design

Simpler within each stack

Optimized performance

Cons
Inconsistent across stacks

Type 2 is more complex

Type 3 might be overkill



Functional Organization



“The architecture should scream
the intent of the system!”

– Uncle Bob
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Material Quantity Cost

Appliances 5 $5,000

Cabinets 10 $2,500

Doors 15 $750

Fixtures 12 $2,400

Floors 9 $4,000

Walls 20 $10,000

Windows 8 $2,500
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So what?
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Why Use Functional Organization

Pros
Spatial locality

Easy to navigate

Avoid vendor lock-in

Cons
Lose framework conventions

Lose automatic scaffolding

Categorical is easier at first
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Microservice Architectures

Independent

Similar to SOA

Size matters
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Why Use Microservices?

Pros
Less cost for large domains

Smaller teams

Independence

Cons
Only for large domains

Higher up-front cost

Distributed system costs
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Where to Go Next?

http://cleancoders.com/ Robert C. Martin

http://cleancoders.com/


Where to Go Next?

Eric Evans



Where to Go Next?

Greg Young Udi Dahan



Where to Go Next?

Articles

Courses

Presentations

Source Code

Videos

www.matthewrenze.com



www.pluralsight.com/authors/matthew-renze
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Summary

Focus on the inhabitants

Domain-centric Architecture

Application Layer

Commands and Queries

Functional Cohesion

Bounded Contexts

Sales

Support

Inventory

Marketing HR



Feedback

Very important to me!

One thing you liked?

One thing I could improve?
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